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Using Ontologies in Hierarchical 
Modeling of Genes and Exposure 

in Biological Pathways 
David V. Conti, Juan Pablo Lewinger, Rachel F. Tyndale, 

Neal L. Benowitz, Gary E. Swan, and Paul D. Thomas 

Existing studies of genetic associations with nicotine dependence frequently do not refl ect 
complex relationships between genetic, environmental, and social factors underlying 
tobacco use. Moreover, the scope of potential genetic variations and their impact on 
analysis pose a conceptual challenge to effective studies of genetic factors. 

This chapter examines the potential for the use of hierarchical modeling techniques 
within the framework of an ontology that quantifies relationships across genotypes and 
phenotypes for nicotine dependence. Topics discussed include 

■ 	 An overview of the existing statistical approaches for genetic association studies 
in tobacco use 

■ 	 Design and analysis considerations in the use of hierarchical modeling in 
conjunction with stochastic variable selection for future genetic studies of 
tobacco use 

■ 	 The use of ontologies for codifying prior knowledge to support effi cient 
computational analysis of such hierarchical models 

■ 	 Results of a study of nicotine metabolism using the data from the Northern 
California Twin Registry in conjunction with the Nicotine Pharmacokinetics 
Ontology, showing significant genetic associations with nicotine clearance levels 

The results of this pilot study, and the potential of these approaches to overcome the 
methodological issues inherent in existing genetic studies, show promise for these 
approaches as an area for further study. 

The analyses described herein were supported by National Institutes of Health grants CA084735, CA52862, DA18019, 
DA20830, DA02277, DA11070, and HL084705. Analysis support was also provided by University of Toronto, Canada 
grants CAMH, and CIHR MOP53248 and a Canada Research Chair in Pharmacogenetics. 
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Introduction
 
This chapter examines the use of ontologies 
as a framework for creating hierarchical 
models that could support quantitative, 
computationally driven research in 
biological pathways for nicotine dependence, 
as a potential means of linking genetic 
and environmental factors to yield a more 
accurate understanding of why people 
smoke. It highlights a specifi c example 
using data from the Northern California 
Twin Registry1,2 to explore the heritability 
of nicotine metabolism, together with a 
discussion of broader issues involved in 
creating hierarchical models in conjunction 
with ontologies that quantify prior 
knowledge of relationships linking specifi c 
genotypes, endophenotypes, and phenotypes 
for nicotine dependence. 

The multistep nature of tobacco use 
progression—from initiation, to episodic 
use, to dependence—provides several 
opportunities for risk factors to act. 
Although distinct factors may affect 
each step, universal factors may also 
create background characteristics for an 
individual throughout use progression. 
In addition, compounding the background 
profile are large, punctuated events, 
such as intervention programs, that may 
substantially alter an individual’s tobacco 
use—both in isolation and synergistically 
with other factors. That is, smoking behavior 
is a composite consisting of large social 
factors, interpersonal relationships, and 
intrapersonal characteristics. Large social 
patterns substantially infl uence smoking 
behavior through demographic changes, 
financial mechanisms, cigarette availability, 
and perceptions of smoking. Economic 
factors such as unemployment rates, income 
levels, and cigarette prices also affect 
individuals’ ability to purchase cigarettes.3 

Although these large social forces often 
affect an individual’s tobacco use, close 

interpersonal relationships have considerable 
influence as well. Personal relationships 
with family, friends, peer groups, and 
classmates form immediate surroundings 
and an individual’s attitudes.4 Especially 
among adolescents, it is within these social 
networks that individuals make behavioral 
choices about tobacco use—choices 
that depend on individuals’ dispositional 
attributes as influenced by further biological, 
cognitive, and emotional characteristics 
such as the personality traits of hostility and 
depression.5 Of course, these personality 
traits are also under some genetic infl uence. 
For example, monoamine oxidase (MAO), 
a mitochondrial enzyme consisting of two 
isoforms, MAOA and MAOB, is found in 
neuronal and nonneuronal cells in the 
brain.6 Its main function is the breakdown 
of neurotransmitters; it is therefore a key 
enzyme in the regulation of serotonin and 
dopamine levels in the brain. Mouse models 
indicate that genetic variation within MAO 
are associated with changes in the levels of 
serotonin and dopamine in the brain and 
a change in behavior, especially indicators 
of hostility and depression.7–9 Once an 
individual first smokes, the response to a 
particular acute or chronic dose of nicotine 
is determined in part by the rate of nicotine 
metabolism and the genes that infl uence 
metabolic function. There is a long-term 
physiological and psychological response 
as well. 

To simply test the hypothesis of an 
association between a single genetic variant 
and whether an individual currently smokes 
or not ignores any knowledge one might 
have of the underlying etiologic mechanism 
within the analysis framework. But how 
does one incorporate biological information 
into the analysis? Often, the inclusion 
of previous knowledge of the underlying 
biological mechanism has been limited to 
the design phase of a study, only informing 
the selection of potential candidate genes 
and exposures. Thus, the analysis is confi ned 
to determining the independent association 
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of each gene via contingency tables or 
regression models. If joint effects are 
suspected, the analysis is expanded to include 
the search for statistical interactions or, 
more specifically, the search for departures 
of independent and additive effects on the 
assumed scale of the outcome.10–12 However, 
it is often unclear how suspected or known 
mechanistic and biological joint action will 
manifest in population-based inferences 
relying on epidemiological data. This chapter 
will examine how appropriate hierarchical 
models can move beyond the existing 
approaches to help form a framework for 
examining such interactions at a more 
macro level, which, in turn, may help to 
better understand and describe the role of 
biology in human smoking behavior. 

Methodological Issues
 
When examining factors in nicotine 
dependence, difficulties in estimating 
and testing effects are compounded with 
the expanding numbers of exposures, 
genotypes, intermediate measures, and 
multiple phenotypes now readily available 
and relatively inexpensive to obtain 
on population samples with modern 
technologies. Such an extent of available 
information may lead an investigator to 

search for interaction effects in fi ner strata 
with limited information from the data or 
to exclude potentially valuable measures. 
For instance, possible “omic” measures such 
as metabolomics (e.g., surrogate measure 
of metabolite concentrations within a 
pathway),13,14 proteomics (e.g., surrogate 
measures of enzyme concentration 
or activity within a pathway),15,16 

epigenomics (e.g., DNA methylation),17 

and interactome (e.g., protein-protein 
binding interactions)18–20 are ignored in 
conventional gene-disease association 
analyses, or they are treated as an outcome 
in gene to intermediate-phenotype studies. 
Inclusion of all measures (e.g., exposures, 
genes, intermediate phenotypes, and 
disease) in a structured joint analysis may 
provide valuable information in clarifying 
the separate component contributions, 
their aggregate effects in complex pathways, 
and ultimately, determining an individual’s 
overall risk of disease. Furthermore, each 
factor may contribute only a small effect 
that may be detected only when all relevant 
factors are considered together. Here, 
conventional regression models often 
reach their limits in attempting to model 
all these factors jointly.21 

These difficulties have led to the 
development of many data-mining statistical 

Ontologies: A Defi nition 

An ontology is a formal structuring of knowledge.a For the purposes here, an ontology is a 
formal model of a domain of knowledge and consists of entities and relations between entities. 
An entity is simply a class, or category, of things that one wishes to model. An entity can be 
either a continuant (an object existing at a particular point in time) or an occurrent (an event 
or process occurring over time). Relations can be of many types, depending on the knowledge 
domain being represented. Two of the most common are the “is_a” relation, which specifi es one 
class as a subclass of another (e.g., human is_a mammal), and the “part_of” relation (e.g., fi nger 
part_of hand). Ontologies have their origins in Aristotelian philosophy, but computer science has 
driven a renaissance in ontology development and use—initially, by the problem of representing 
computational knowledge in the artificial intelligence field, and subsequently, the Semantic Web. 
aSmith, B., W. Ceusters, B. Klagges, J. Kohler, A. Kumar, J. Lomax, C. Mungall, F. Neuhaus, A. L. Rector, and 
C. Rosse. 2005. Relations in biomedical ontologies. Genome Biology 6 (5): R46. 
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techniques aimed at detecting higher-order 
interactions.22 Such approaches include 
tree-based methods based on recursive 
partitioning of the data, such as random 
forests23 and logic regression.24 For these 
methods, the data are split by a single 
binary variable into two subsamples with 
varying trait or outcome characteristics. 
These subsamples are then investigated for 
further splits that may be warranted on the 
basis of additional variables. Higher-order 
interactions are inferred by identifying 
the combination of variables and the 
corresponding splits that identify particular 
subgroups. To avoid overfitting of the data 
or finding splits that may exist only by 
chance, pruning techniques are applied 
to reduce the number of splits according 
to some pruning criteria. While these 
techniques can be effective at identifying 
higher-order interactions, there are some 
limitations as far as interpretability and 
flexibility in the modeling (e.g., including 
covariates and forcing in certain effects). 
As an alternative within the regression 
framework, Millstein and colleagues 
proposed a method called the “focused 
interaction testing framework.”25 This 
approach tests main effects and interactions 
among multiple candidate genes by using 
a series of orthogonal tests in a staged 
manner. Specifically, this approach tests 
the main effect of each candidate gene in 
stage 1, followed by models with two-way 
interactions in stage 2, and with three-
way interactions in stage 3. An algorithm 
based on controlling false discovery 
rates (FDRs)26–30 is used to control the 
experiment-wise type I error to a predefi ned 
level (e.g., 0.05). While simulation work 
has shown promise for this method when 
a single polymorphism is present within a 
gene, it is not clear how this would work 
when multiple correlated single nucleotide 
polymorphisms (SNPs) are included for 
several genes. 

Data-mining techniques rely solely on the 
data for inference and ignore any prior 

knowledge that may exist regarding the 
factors of interest, specifically that these 
factors may be part of a biological pathway. 
An editorial in Cancer Epidemiology, 
Biomarkers & Prevention in 200531 laid 
out the case for pathway-driven research in 
molecular epidemiology and the need for 
further methods development in support of 
such research. The editorial described two 
broad types of approaches: one based on 
mechanistic modeling of specifi c pathways 
of interest, the other based on empirical 
modeling that incorporates what is known 
about the factors involved in a pathway 
in a flexible manner without requiring 
such strong parametric assumptions. 
The mechanistic approach can be thought 
of as a structural equation model in 
which the topology of the structure is 
specified by biological knowledge. This 
was first introduced in an application 
to a case-control study of colorectal 
polyps in relation to well-done red meat 
consumption, tobacco smoking, and the 
various genes involved in the metabolism 
of polycyclic aromatic hydrocarbons 
and heterocyclic amines that these 
exposures produce.32 Here, the sequence 
of intermediate metabolite equilibrium 
concentrations was modeled in terms of 
a linear pharmacokinetic model, with 
person-specific metabolic rate parameters 
that depended upon their genotypes. 
The entire model, comprised of regression 
coefficients, individual- and genotype-
specific population rate parameters, and 
their variances, was fit by using Markov 
chain Monte Carlo (MCMC) methods. 
While the authors of this chapter are 
continuing to investigate the statistical 
performance of this approach via simulation 
studies in a more general setting, it is 
recognized that the major limitation of 
this approach is the expertise needed to 
construct the topology of the mechanistic 
model. Unfortunately, very few biological 
pathways are understood well enough 
to specify the specific mechanism from 
genes to outcome. While extensions exist 
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to estimate the topology, these methods 
rely heavily on accurately measured 
intermediates—intermediate measures that 
are often unmeasured in epidemiological 
studies or measured on only a subsample 
of individuals. 

As an alternative to these highly parametric 
models, a background and extensions 
to hierarchical modeling are presented 
here. Hierarchical modeling with prior 
covariates aims at stabilizing and informing 
estimation by incorporating similarities 
among regression estimates using categories 
describing biological similarities between 
genes and exposures. To narrow the space 
of possible regression models, the prior 
probability of including any variable as 
a function of known biology is further 
structured. This is accomplished via Bayes 
model averaging using stochastic variable 
selection. Similar to the parametric models, 
these hierarchical models utilize prior 
knowledge and information to aid inference. 
However, in contrast to the highly specifi ed 
mechanistic models, the knowledge only 
specifies exchangeable classes or sets of 
factors with similarities. Often this reduces 
to a series of indicator variables based on 
expert opinion. Because these opinions 
may be susceptible to subjective infl uences, 
the use of ontologies is proposed. Ontologies 
attempt to represent the knowledge 
base in a computable form to provide 
“a shared and common understanding of 
some domain that can be communicated 
between people and application systems.”33 

Thus, ontologies attempt to transform 
implicit knowledge into specifi c and 
explicit relations. Here, a discussion is 
provided of how these relations may be 
incorporated into the hierarchical models 
to aid in model selection, inference, 
and interpretation of conclusions from 
observational studies. 

Background on 
Statistical Approaches 
Models for Multivariant Data 
within a Candidate Gene 

Assume an investigation of G candidate gene 
regions for gene association and possible 
identification of specific causal variants   
for an identified outcome. Further assume  
that each gene is independent from the 
others—that is, no linkage disequilibrium 
(LD) or no underlying biological interaction 
between genes. A quantitative trait outcome 
is the focus, but by using a generalized 
linear framework and the appropriate 
link function, the discussed methods 
can be extended to other types of traits.34  
In addition to J exogenous or nongenetic 
covariates specified in the design or  
covariate matrix W, assume that there are 
Mg finely spaced SNPs within each gene,  g,  
and that for each polymorphism, genotype-
level information for all individuals in 
the study is obtained. bgm is used as an 
estimate of the risk from SNP m in gene g. 
For clarity, the modeling on SNPs is mainly 
discussed; however, the following analyses 
are also applicable to the modeling of other 
genetic markers such as microsatellites. 
First, treating the SNPs as independent, 

Mg separate regressions are performed, 

assuming a disease model of the form (1) 
where Xgm indicates the number of variant 
alleles for SNP m (i.e., additive coding) 
in gene g (e.g., Xgm = 1 if heterozygous 
and Xgm = 2 if an individual carries two 
copies of the variant allele), although one 
may also consider dominant or recessive 
genetic models.35 The parameter estimate 
djgm corresponds to the effects of the j th 
covariate on the outcome conditioned on 
SNP m in gene g. 

(1) 
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Additional information may be incorporated 
if one accounts for the effect of an SNP 
conditional on all other SNPs within the 
candidate region. This is accomplished with 
a joint main effects model of the form (2). 

Here, one sums over all the SNPs within a 
gene g but treat each gene as independent. 
The parameter estimate dgj corresponds 
to the effects of the j th covariate on the 
outcome conditioned on the SNPs in 
gene g. By accounting for the correlations 
between SNPs, this model may be useful in 
determining the independent contribution 
of each SNP within a given region, but it 
ignores any effects due to the arrangement 
of SNPs either on the same chromosome 
(i.e., haplotypes) or combinations of SNPs 
within an individual (i.e., interaction). 

Aiming to capture synergistic effects 
between SNPs within a single candidate 
gene, the model in equation (2) may be 
extended to incorporate all interaction 
terms between SNPs. This model builds on 
the joint model in equation (2), with the 
form (3) where Xgm*g = Xgm*Xg and “…” 
indicates potential higher-order interaction 
terms. Here, the focus is only on all pairwise 
second-order interactions within a gene, 
although one may expand this model to 
higher-order interactions. 

In the above models, a test of the statistical 
significance for association to disease for 
each SNP can be obtained via a Wald test, 
score test, or likelihood ratio test (LRT) of 
each bgm. In addition, for the main effects 
model (2) and interaction model (3), one 

may perform an omnibus LRT comparing 
a full model in which bgm is estimated for 

each of Mg markers, , 

to the null model in which all SNP effects 
within the gene are set to zero. This 
global Mg-degree of freedom LRT provides 
evidence for an overall association of the 
chromosomal segment to disease. 

When multiple SNPs are available within 
a gene, an alternative is to analyze the 
association of haplotypes to disease. For a 
given set of haplotypes, Hg , the haplotypic 
risk may be modeled by using a similar 
logistic regression for Hg–1 of the 
haplotypes (4). 

Here, Xgh is used as an indicator variable 
denoting the number of haplotypes of type h 
that an individual possesses within gene g. 
Usually for the haplotype model, the most 
common haplotype, hg1 , acts as the referent 
haplotype. Similar to the SNP analysis, a 
Wald test, score test, or LRT statistic may be 
calculated for each ggh to test associations 
with each haplotype. In addition, an 
omnibus LRT can test the overall association 
of the gene region to the trait. If haplotypes 
are unknown, one may substitute for Xgh 

36,37an expected probability for haplotype h.
Haplotype-based analysis as outlined in 
equation (4) has been advocated because 
of the potential reduction in the number 
of comparisons made (because there are 
usually fewer common haplotypes than 
common SNPs), the ability of haplotypes 
to better exploit patterns of LD, and the 
capacity to capture causal effects that may 

(2) 

(3) 

(4)
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be due to a combination of variants on the 
same chromosome.38,39 However, to attain 
these potential benefits one must often  
narrow each region to identify a limited 
number of haplotypes; this is typically 
done by identifying blocks or continuous 
regions of high LD along the chromosome. 
This, in turn, makes haplotype analysis 
subject to how one determines these 
regions via the underlying LD structure 
and the accompanying uncertainty in that 
determination.40–43 

As an alternative to haplotype analysis, 
Conti and Gauderman44 proposed a modifi ed 
pairwise interaction term to capture phase 
information in equation (3) to allow for 
most of the haplotype information in the 
data to be exploited, without having to 
consider all possible haplotype resolutions, 
as required for equation (4). At the genotype 
level within gene g, one can approximate 
haplotype information by modifying the 
second-order interaction terms in model (3) 
to describe the phase between pairwise 
SNPs, m and  , and given the two haplotypes 
for individual i,  hig1 and hig2. Specifi cally, 
the definition is given in equation (5).  

The above coding assumes that the cis  
configuration or double variant haplotype  
is additive to disease. However, it is also 
possible that the trans configuration of the  
variant alleles, as defined here, may be at  
higher risk. In this alternative case, one can 
specify the reverse coding for the double 
heterozygotes (i.e., if Xgm*Xg = 1, and hig1  
or hig2 is the double variant haplotype, then 

Xgm.g = 1). This parameterization allows 
for separate tests for each SNP effect (bgm ),  
pairwise phase term (bgm.g), and the overall 
contribution of the candidate region to 
disease via a global LRT. When the phase is 
unknown, the cis phase term is altered to 
reflect the probability of a  cis haplotype in 
the population for each pair of loci assuming 
Hardy-Weinberg equilibrium. As an example, 
assume two SNPs, A and B, each with two 
alleles, (A, a) and (B, b), respectively, as 
well as the four possible haplotypes, AB, 
Ab, aB, and ab. Thus, one can calculate 
the probability of the cis confi guration 
of the two SNP haplotypes as given in 
equation (6) where P(AB), P(Ab), P(aB),  
and P(ab) are estimated from genotype 
data using the expectation maximization, 
or EM, algorithm.45 This is equivalent to 
altering the phase term in equation (5) 
by setting Xgm.g = if Xgm*Xg = 1. 
Thus, a genotype model with phase 
interaction terms not only avoids long-range 
haplotype estimation but also allows for 
the investigation of which SNPs are driving 
the association within each candidate gene. 
In addition, this model provides a fl exible 
framework for incorporating relations 
among numerous SNPs over several 
candidate genes. 

Extensions to Multiple Genes 
and Exposures 

The above models present various 
alternatives to the analysis of numerous 
variants within a candidate gene, with the 

(5)
 

(6)
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increase in complexity aiming to better 
capture the LD and joint effects of multiple 
SNPs. The complexity may be warranted if 
a true causal SNP is not measured, and the 
analysis must rely on how the combination 
of measured SNPs captures the underlying 
effect. Of course, if a true causal variant(s) 
is measured, the most appropriate model 
may be the one that focuses solely on that 
variant(s), ignoring all others. In contrast, 
it may be the combination of several SNPs 
acting together that leads to variation in 
the outcome. In this case, simple tests of 
the marginal effect of each SNP may not 
be sufficient, and interaction terms may 
be necessary to detect these higher-order 
joint actions. Thus, even within a single 
gene, there are uncertainties regarding 
the most appropriate model to use. 
These uncertainties only increase as one 
attempts to evaluate multiple candidate 
genes, each with multiple polymorphisms. 
The previous models treat each candidate 
gene as independent. This assumption may 
be adequate if the genes are unlinked, and 
therefore, SNPs between candidate genes 
are not in LD. However, because a set of 
candidate genes is most often selected with 
a priori knowledge that they act via an 
underlying biological mechanism or pathway, 
there is a good possibility that interactions 
may be present across genes. Their linear 
modeling framework may be expanded to 
accommodate multiple gene effects as given 
in (7) by summing over all possible genes G 

(7)
 

(8)
 

and, within each gene, including all marker 
main effects and phase terms, and including 
interaction terms across genes (7). 

For similar reasons, one may also want to 
investigate gene-environment interaction 
with measured covariates. This expands the 
model further as in (8). 

The Challenge of Numerous 
Polymorphisms and Exposures 

The investigation of associations for 
numerous polymorphisms within a 
single candidate gene and across multiple 
genes can raise concerns about multiple 
comparisons and sparse data bias in 
estimation. As one extreme approach, 
each polymorphism can be treated as 
independent, as in model (1). This approach 
is problematic: these reduced models may 
result in underestimated variance, and they 
do not account for the correlation that 
may exist among the polymorphisms, such 
as two polymorphisms in LD with each 
other within a gene region.46 Furthermore, 
treating each polymorphism as independent 
and relying on statistical tests across 
all polymorphisms can lead to issues of 
multiple comparisons. While one may 
perform adjustment in the declaration of 
significance, such as a Bonferroni correction 
or control of the false discovery rates,27,47,48 

these procedures may not accurately 
account for the relations between the 
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polymorphisms, and they do not yield 
estimates of effect conditional upon other 
polymorphisms and exposures. 

At the other extreme, the analyst may 
choose to model all main effects and 
interactions in one single model, as 
described in equation (8). Including all 
genetic polymorphisms and exposures in 
one model can lead to biased and unreliable 
estimates due to sparse data when the 
number of parameters approaches the 
number of individuals in the sample.21,49 

These models tend to overfit the data, 
resulting in estimates that explain the 
observed data well, but will lead to 
unrealistic predictions for any new data or 
biased inferences implied by the estimates. 
While conceptually attractive, in modern 
observational studies this approach quickly 
reaches the limits of the data, especially 
given the relatively large expense of 
enrolling an individual into a study in 
comparison to the rapidly dropping costs 
of obtaining a plethora of genotype-level 
information for a given individual. Often, 
a compromise in analysis approaches comes 
in the form of model selection or using the 
data and/or prior information to determine 
which set of polymorphisms and exposures 
may have substantial effects and only 
include those terms in the model. Models 
(1) through (7) may be viewed as types of 
reduced models in which polymorphisms 
and/or genes are assumed to be independent 
or interacting effects are assumed to be 
nonexistent. The use of knowledge or 
statistical tests is attractive in providing 
the analyst with simplified models in which 
to estimate and interpret. However, it is 
important to realize that, by not including 
a certain term in the model, the analyst is 
implicitly stating a belief that, with 100% 
certainty, that term’s effect estimate is zero. 
Is previous knowledge reliable enough to 
justify the exclusion of a term, or is there a 
level of uncertainty? Clearly, relying solely 
on a priori decisions of what to include 
in the model is limited to the accuracy 

of the prior knowledge and, moreover, 
these a priori decisions ignore the data 
completely. In contrast, model selection 
procedures that use only the data to decide 
which terms to include in the model may 
underestimate the variance for each term 
by not accounting for the uncertainty in 
the selection procedure itself. Furthermore, 
automated procedures are prone to 
increased type I errors (i.e., false positive 
errors) by relying strictly on statistical 
cutoffs in the model-building process.50 

Potential Solutions 

To address these issues, an approach is 
proposed that uses hierarchical modeling 
and stochastic variable selection. 
Hierarchical modeling allows for the 
construction of complex probability models 
that incorporate higher-level information 
to yield more stable and plausible measures 
of association. Stochastic variable selection 
utilizes both the data and prior knowledge 
to determine which terms to include in 
the models, resulting in a guided model 
search leading to more representative and 
interpretable models. These approaches are 
possible because the hierarchical nature of 
the data—that is, polymorphisms within 
genes and genes within pathways—provides 
an opportunity to formalize a bottom-
up approach placing more emphasis on 
combinations of polymorphisms within 
a gene in comparison to combinations 
across genes. This hierarchy served as the 
foundation for the development of the 
various approaches outlined in equations 
(1) through (8). This culminates in the 
saturated model (8) in which one fi rst sums 
over SNPs main effects and SNP interaction 
effects within a gene, then SNP interaction 
effects across genes, and fi nally, over 
SNP × covariate interactions. It is proposed 
to formalize the combination of knowledge-
based heuristics and model selection 
procedures in deciding which model is most 
appropriate. In this context, hierarchical 
modeling and stochastic variable selection 
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as conventionally applied are briefl y 
introduced, and then these approaches are 
combined in a pathway-based model. 

Hierarchical Modeling 

A primary motivation for using hierarchical 
modeling and stochastic variable selection 
with structured priors is to describe the 
joint distribution of the underlying genetic 
structure and biological mechanism 
represented by the data and, notably, the 
uncertainty in representing that structure 
and mechanism. In doing so, the parameter 
estimates and corresponding uncertainty 
intervals will better capture the dependency 
between terms; therefore, the resultant tests 
will more effectively reflect the evaluation of 
multiple polymorphisms and exposures.49–53 

This is similar in spirit to an approach 
proposed by Wacholder and colleagues54 in 
which they introduced a Bayesian procedure 
for multiple comparisons that incorporates 
a prior specification of the probability of 
any given polymorphism being associated 
with an outcome. While the notion of 
incorporating prior knowledge into testing 
and estimation is an important one, the false 
positive reporting probability of Wacholder 
and colleagues54 frames the decision into a 
binary choice between the null hypothesis 
and an effect size determined from estimation 
using observed data.55 Alternatively, one can 
specify a prior distribution for the effect size 
via a hierarchical model. By incorporating 
known information regarding the relations 
among the genetic polymorphisms, a joint 
distribution is specified that both stabilizes 
the final effect estimates and incorporates 
dependencies across multiple tests of 
association. Specifically, one can model the 
regression coeffi cients bgm from model (9) in 
terms of a regression on a vector of q “prior 
covariates” Zgm = (Zg1,…Zgq ). Thus, a second-
level model of the form is adopted (9). 

(9) 

The design matrix Zl contains the second-
stage covariates refl ecting higher-level 
relations between the polymorphisms, is a 
column vector of coeffi cients corresponding 
to these higher-level effects on the trait 
outcome, U is a column vector of random 
effects capturing the residual variation 
after adjustment by the relations in Zl, 
and R is a covariance matrix specifying any 
residual covariance among the regression 
coefficients. This hierarchy results in  
posterior estimates of effect for the 
polymorphisms , which are an inverse-
variance weighted average between the 
maximum likelihood estimates obtained 
from a conventional regression and the 
estimated conditional second-stage means 

. Thus, the final estimates of effect are  
dependent upon the amount of information 
available. Estimates with less information 
may be unstable and will tend to have 
larger variances. This, in turn, will result 
in a final posterior estimate more heavily  
weighted toward the prior information 
reflected by the conditional second-stage  
means . 

An important assumption here is that 
the modeled parameters, the bs, are 
exchangeable. Formally, this means that 
conditional on the information in Zl, 
the parameters have no prior ordering 
or grouping such that their joint 
distribution, f (b11,…,bgm), is invariant to 
permutations of the indexes g = (1,…,G )  
and m = (1,…,M ). If this assumption 
holds, one may assume that the parameters 
are drawn from the same population 
distribution. In practice, the validity of 
this exchangeability assumption requires 
one to both focus on the interpretation 
of the bs and on how to group them via 
the design-matrix Zl. First, in linear 
regression, the bs represent the increase in 
the outcome, Y, given a one-unit increase 
in the independent variable, X. In the 
analysis of SNPs, these effect estimates are 
the increase in Y given one unit in change 
in the variant allele, assuming an additive 
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coding for a selected variant. Here, across 
numerous SNPs, all the bs refl ect similar 
interpretations for their corresponding 
effect estimates, and the design matrix 
Zl may be constructed to incorporate a 
priori knowledge of SNPs having similar 
estimates of effect, for example. However, 
even in this simple example of multiple 
SNPs, care must be taken in how the 
effect estimates are interpreted and the 
impact this interpretation will have on 
the construction of the prior covariates. 
Specifically, for a particular SNP, one must 
consider which of the two alleles describes 
the increase in effect.56 If it is known that 
two SNPs might share similar risks—that 
is, are exchangeable classes conditional on 
the design matrix—one is really assuming 
that the two variant alleles as defined at the 
two respective SNPs share similar effects 
in the same direction. If one does not have 
knowledge of the direction of effect for 
each variant, then one may incorrectly 
specify sharing of two effects that act 
in opposite directions and are thus not 
from the same population distribution.57 

Further complications arise as the analysis 
is expanded to include environmental 
covariates. On what scale does one defi ne 
the effect estimates corresponding to 
environmental covariates? And, is the 
corresponding effect estimate exchangeable 
with other covariate or SNP estimates? 
To address these difficulties, it is proposed 
that the hierarchical model be modifi ed 
to model the test statistics rather than the 
effect estimates. This will be discussed later 
in the “Methods” section. 

Model Selection via Stochastic 
Variable Selection 

Although hierarchical modeling can 
stabilize the estimates of effect across 

the numerous terms, it is also of interest 
to highlight the linear combinations of 
SNPs and phase terms that best capture 
the gene-disease relations. Furthermore, 
it is desirable to account for varying prior 
beliefs that each polymorphism or term 
is involved in the trait outcome. That is, 
although all the genes were chosen with 
at least some belief that they are involved 
in the outcome under investigation, some 
genes are more likely to be involved given 
prior functional evidence or knowledge of 
the underlying biology. Similarly, within 
a specific gene, some polymorphisms 
are more likely to affect trait variation, 
with some polymorphisms chosen 
because of putative functional evidence 
and others chosen strictly to capture an 
unknown causal effect via LD. Thus, a 
stochastic variable selection approach 
is proposed to stochastically search the 
model space to highlight important SNP 
and phase terms and to average over all 
possible models. This approach has the 
advantage of accounting for uncertainty 
in model selection and allowing for a 
flexible prior structure in which one can 
incorporate the relations among terms 
when selecting representative models. 
Previously,58 a variation was implemented 
of the stochastic search variable selection 
algorithm, first presented by George and 
McCulloch,59 by introducing a latent 
variable, cv = 0 or 1, indicating whether a 
term, m, is included in a model (10). 

The above specification is conventionally 
implemented with a prior second-stage 
normal distribution with a mean of zero. 
While others have discussed the use of 
semi-Bayes or empirical-Bayes approaches 
to prespecify w and r 2,59–61 a fully Bayesian 
approach can be adopted to integrate 
over posterior distributions using MCMC 
methods as implemented in WinBUGS.44,58,62 

(10) 
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The posterior probability of c = 1 and the 
set of possible models visited during the 
stochastic search can be used to gauge the 
impact of each term and the combinations 
of SNPs and phase terms that best explain 
the relation of genetic variation to disease. 
These posterior probabilities will depend 
on the specified prior distribution for  c. 
The simplest form of the prior is to assume 
a binomial prior distribution for c (11) 
where qv is the probability that cv = 1. 
By assuming that qv is constant for all 
terms, one assumes that the corresponding 
parameters, bv , are exchangeable, as 
indicated in equation (10), and equally 
likely to be included in any given model. 
Specifically , main effects and interaction 
terms are equally likely. However, it is 
desirable to structure the prior in equation 
(11) to both guide the stochastic search 
to models that are more parsimonious in 
relation to the number of SNPs or terms 
included in any given model, and also to 
assist the stochastic search in the inclusion 
of phase terms, conditional on the inclusion 
of both “parent” SNPs used to defi ne the 
pairwise interaction term.63 Following Conti 
and Gauderman,44 the level of parsimony can 
be controlled by setting the prior for q for 
SNP main effects as Pr(qSNPs) = Beta(1,3). 
This gives a low expected probability 
(E[qSNPs] = 0.25) of inclusion for any given 
SNP and places emphasis on models with 
fewer SNPs. 

Furthermore, following Chipman,63 

a conditional probability for inclusion 
of phase terms, cgm.g, is defined as (12). 
This conditional prior reduces the model 
space visited by the stochastic search. 
This structure is invoked to refl ect the 
approximation of the underlying haplotype 

(12)
 

(11)
 

architecture with linear combinations 
of SNP and, if necessary, phase terms. 
Introducing a hierarchical dependency of 
phase terms on the “parent” SNP terms 
directs the stochastic search to simpler 
and more stable models, if appropriate. 
To offset this restriction and to encourage 
the exploration of the importance of 
phase, a higher probability is specifi ed for 
the inclusion of phase terms, conditional 
on the inclusion of both “parent” SNPs, 
Pr(qgm.g | cgm = 1, cg = 1) = Beta(3,1). This 
puts a higher prior expected probability 
on the phase terms (E[ qgm.g | cgm = 1, 
cg = 1] = 0.75). However, marginally, the 
prior expected probability for the inclusion 
of any given phase term is lower than the 
SNP main effects, E[ qgm.g] = 0.05. This 
structured prior in equation (12) acts to 
both guide the stochastic search to models 
that are more parsimonious in relation 
to the number of SNPs included in any 
given model, and also assists the stochastic 
search in the inclusion of interaction 
terms, conditional on the inclusion of both 
“parent” main effects used to defi ne the 
interaction term. In a similar fashion, the 
structured priors can be used to limit and/or 
guide the model search to combinations 
of SNPs across genes within subpathways 
and networks, and models can thus be 
summarized.64 

Methods 
General regression approaches to the 
analysis of multiple SNPs within and across 
candidate genes have been reviewed. Also, 
both hierarchical and model selection 
extensions to these regression models 
have been discussed. As mentioned earlier, 
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it is desirable to combine the benefi ts of 
borrowing information from exchangeable 
classes via hierarchical modeling with 
the ability to search the expansive model 
space via stochastic variable selection. 
However, the combination of these two 
approaches introduces two notable 
practical difficulties. First, how does one 
reasonably define exchangeable classes 
across SNPs (and possibly microsatellites), 
environmental factors, and all possible 
interaction terms? Second, how does one 
search such a vast space of applicable 
models in a reasonable amount of 
computational time? One can begin by 
first framing the hierarchical model 
on unsigned summary statistics from 
the regression model rather than from 
the effect estimates. Thus, one only has 
to define exchangeable classes for the 
unsigned summary statistics and avoid 
specification for the effect estimates, which 
may vary in scale and direction. In addition, 
an empirical Bayes approach is used to 
regress these summary statistics on prior 
covariates to yield posterior estimates of 
the summary statistics and of the probability 
that a summary statistic is nonzero. 
This probability, in turn, determines the 
probability that a corresponding term is 
included in the model. 

Hierarchical Model 

Following Lewinger and colleagues,65 one 
can begin by defining a W ald test statistic, 

, for a specifi c term, m,  
in a regression model. This test statistic 
has an asymptotic v2 distribution with 
one degree of freedom and a noncentrality 
parameter . Since the interest is in 

(13) 

(14) 

defining exchangeable classes independent  
of the direction of effect, the focus is on 
the unsigned statistic and the 
corresponding noncentrality parameter 

, resulting in an asymptotic 
distribution for tv as v1(kv) = |N(kv,1)|. 
Specifically , this distribution is of the 
form (13) where u is the standard normal 
density. This places a second-stage 
distribution on the test statistics obtained 
from a first-stage regression model.  
Of interest is deciding if this test statistic 
provides evidence for the SNP or factor 
being involved in the outcome of interest. 
If kv = 0, there is no association with the 
outcome. Positive values for kv indicate 
an association with increasing evidence 
as kv grows in magnitude. This can be 
formalized by modeling the ks as a mixture 
between a chi distribution with a positive 
noncentrality parameter and a point mass 
d(0) where kv = 0 (14). 

Here, Hv is an indicator of whether a term 
is associated with the outcome and pv 

is the corresponding probability of that 
association. Given that there is a true 
association, the expected noncentrality 
parameters are infl uenced by ev and r > 0. 

The terms in a regression model are not all 
equivalent in regard to prior information 
that may be available (e.g., is the SNP 
known or predicted to affect gene 
function? Or, how important is the gene 
in a particular pathway?) and in regard to 
the hierarchical structure of the model 
(i.e., main effects versus interactions). 
Recognizing that differences exist across 
terms, both the probability that the 
association is true and magnitude of the 
noncentrality parameter are regressed on 
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a set of prior covariates constructed to 
indicate the prior knowledge (15). 

(15)
 

The intercept l0 is constrained to be 
nonnegative for identifiability. For details 
regarding the estimation of the relevant 
parameters, see appendix 1. 

Model Selection via Stochastic 
Variable Selection 

The above hierarchical model incorporates 
prior information into the estimation 
of the posterior probability that a term 
is associated with an outcome and the 
magnitude of the test statistics. However, 
the model assumes that there is a given 
regression model in which to obtain the 
corresponding test statistics. Given the 
immense space of all possible models 
outlined in equations (1) through (9), 
it is desirable for the priors and the data 
to influence which models are examined.  
Following the previous discussion on 
stochastic variable selection, a vector of 
variables, , is introduced that indicates 
if a certain term is included in the model. 
Conditional on the selected terms, the test 
statistic is then calculated as (16). 

(16)
 

To allow for both the priors and the data 
to influence model selection, one sets 
the probability that a term is included 
in a regression model to be equal to the 
probability that an association is true, 
that is, (17). 

(17) 

Because of the hierarchical nature of the 
terms within a given regression model, 
a similar conditioning as outlined in 
equation (12) for the inclusion of interaction 
terms is included. For more details 
regarding the model selection algorithm, 
see appendix 2. 

The prior structure specifi ed via Zl and 
Zp and incorporated into this hierarchical 
model serves two purposes. First, it allows 
the posterior estimates of and to 
borrow information from exchangeable 
classes, and second, via  , it will guide the 
stochastic search to regression models that 
include more biologically relevant terms. 
The overall impact of these structured 
priors is to narrow the space of possible 
models searched via the stochastic 
algorithm. Thus, instead of being faced 
with an impossible number of main effect 
and interacting terms and possible models, 
the process is reduced with biological 
knowledge to an informed and guided 
search procedure. 

In the process of the stochastic search, 
the data will serve to update the prior 
probability and inform one of the impact 
of each factor via the posterior estimates 
for  ,   , and the posterior probability of 
certain terms being selected. For inference 
regarding the posterior magnitude of the 
test statistic, calculation (18) is made. For 
the posterior probability of an association to 
be true, calculation (19) is made. 

Because the final inference regarding the 
importance of each factor via the posterior 
probability of association and the probability 
of each factor being selected must refl ect 
the prior probability structure, one relies on 
Bayes factors for inference.66 Bayes factors 
are the ratio of the posterior probability 
odds, comparing two hypotheses to the prior 
probability odds, and can be thought of as 
a type of marginal likelihood ratio for the 
comparison of two hypotheses. For example, 
calculate as in equation (20). 
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(18)
 

(19)
 

(20)
 

The numerator is calculated by using the 
frequency distribution of cv = 1 from the 
MCMC iterations when examining the 
association to Y. In a similar fashion, the 
denominator is calculated by calculating 
the frequency distribution of cv = 1 under 
the null of no association to Y, or effectively 
removing Y from the conditioning. Also, 
a Bayes factor should be calculated for the 
posterior probability of a true association. 
For each hypothesis comparison, a Bayes 
factor between 3 and 20 can be considered 
as “positive” evidence, 20 to 150 as “strong” 
evidence, and greater than 150 as “very 
strong.”66 

Prior Knowledge and Ontologies 

The list of candidate genes has been chosen 
because they are involved in biological 
pathways suspected in the trait process. 
Thus, in branching out from assessing 
the impact of a single candidate gene to 
comprehensively evaluating the factors 
within interconnected pathways, one is 
faced with the a priori possibility that many 
interactions, often of higher order, will exist 
between factors (as represented in model [9]). 

For genetic association studies, one wants 
to encode in computational form prior 
knowledge that can either (1) estimate the 
likelihood of effects from a specifi c genotypic 
or phenotypic variable or (2) hypothesize 
a relationship between two or more 
variables that would otherwise be assumed 
to be independent: genotype-genotype 

relationships, phenotype-phenotype 
relationships, and genotype-phenotype 
relationships. Knowledge of these types has 
been used in association studies, but only 
in either the study design phase or as an 
independent analysis, not as an integral part 
of a global analysis as proposed here. As a 
familiar example, “coding SNPs” are often 
prioritized in genotyping studies because 
they cause a change in the protein product 
of a gene—either a missense (amino acid 
substitution) or nonsense (premature stop 
codon) change—that is, more likely to 
have a phenotypic effect than a random, 
noncoding SNP. Interactions are often tested 
between polymorphisms within a particular 
gene because they have a relatively high 
likelihood of interacting simply by virtue 
of being in the same gene. The LD provides 
knowledge of haplotype structure in the 
population that can be used to select SNPs 
for genotyping.67 

Prior Knowledge About Potential 
Functional Effects of Genetic 
Polymorphisms 

A number of prediction algorithms exist 
for estimating the probability that a given 
genetic polymorphism may have phenotypic 
consequences. Most human polymorphisms 
are believed to have little or no detectable 
phenotypic effect;68 it is almost certainly 
true that in any given genetic association 
study, the probability that a randomly 
chosen polymorphism affects the phenotype 
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of interest is vanishingly small. A number 
of computational methods have been 
developed to estimate the probability that a 
polymorphism has a functional effect, such 
as the Sorting Intolerant From Tolerant, or 
SIFT, procedure;69 PolyPhen (polymorphism 
phenotyping);70 and subPSEC (substitution 
position-specific evolutionary conservation).71 

Most of these methods apply to 
nonsynonymous coding SNPs (SNPs that 
result in an amino acid substitution in the 
protein product of a gene), and they predict 
the probability specifically of a deleterious 
effect. The most commonly used methods 
analyze either (1) related protein sequences 
and judge a polymorphism to be deleterious 
if it causes a substitution at a highly 
conserved site (because conservation is due 
to natural selection against substitutions 
at that site)72–74 or (2) how the change may 
disrupt known elements of protein 3D 
structure (e.g., substitutions in the interior 
of proteins are more likely to destabilize 
protein structure).72,75 Figure 12.1 shows 
examples of these analyses, applied to the 
*2 variant of CYP2A6 (cytochrome P450, 
subfamily 2A, polypeptide 6), which changes 
leucine 160 to histidine (L160H). This 
substitution completely inactivates the 
enzyme. This substitution can be predicted 
as deleterious by using evolutionary 
analysis (figure 12.1A): all CYP2A (and 2B 
and 2G, not shown) enzymes have either 
leucine, isoleucine, or phenylalanine (large 
hydrophobic amino acids) at that position, 
so histidine, which is polar, would be 
predicted to be deleterious. A structure-
based analysis (figure 12.1B) shows that 
position 160 is on the interior of the protein, 
also predicting a probable deleterious effect. 

Analysis of conservation patterns can also 
be applied to noncoding DNA sequences,76 

although there is generally less statistical 
power than for coding SNP analysis. 
Noncoding DNA sequences generally diverge 
faster than protein sequences, and local 
mutation rates can be difficult to estimate 

in the absence of known, neutrally evolving 
sites (which in proteins can be estimated 
from synonymous coding changes). 

It is important to note that these analyses 
provide prior information about the 
likelihood of a particular genetic change 
resulting in a phenotypic change, although 
not necessarily the phenotypic change 
(or changes) assayed in any particular 
association study. 

Systems Biology and Genetic 
Association Studies 

Of interest is building a model of the 
system (including both biological and 
environmental variables) that represents 
how a perturbation in any one variable 
will affect other variables in the system. 
The more information in the model, the 
more information can be used to infer effects 
of changes in genetic or environmental 
variables. In genetic association studies, 
the minimal set of variables includes 
genetic polymorphisms and phenotypic 
effects (outcomes). One way to visualize 
this system is in terms of a network model, 
in which nodes represent variables and edges 
represent potential paths for propagating 
perturbations to the system. Examples of 
networks are given in figure 12.2. In this 
model, a variant allele (e.g., a polymorphism) 
of a gene is a “perturbation” of the system 
relative to the wild-type allele. An association 
between a polymorphism and a phenotype 
implies that the perturbation due to the 
polymorphism was propagated through 
the system to affect the phenotype. If the 
phenotype is a defined event—for example, 
smoking cessation—then the polymorphism 
might affect the probability of occurrence of 
the event. If the phenotype is a quantitative 
trait—for example, cigarettes smoked per 
day—then the polymorphism might affect 
the magnitude or variance of the trait. 

In the simplest case, a genetic association 
study will collect data only on one or 
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Figure 12.1 Evolutionary and Structural Analyses for the CYP2A6*2 Variant 

Note. In the top fi gure (A), evolutionary conservation in homologs of human CYP2A6 at position 160 predicts that CYP2A6*2 will 

have reduced function. Only large, hydrophobic amino acids (L:leucine, F:phenylalanine, I:isoleucine) are found in all homologues 

while the CYP2A6*2 variant codes for a histidine at this position. The left panel shows a phylogenetic tree of some mammalian 

homologues of human CYP2A6, the middle panel provides information about each sequence including the gene and organism 

(mouse: Mus musculus; rat: Rattus norvegicus; dog: Canis familiaris; pig: Sus scrofa; cow: Bos taurus; macacque: Macaca mulatta;  

human), and the right panel shows part of the sequences of the corresponding protein near position 160 in CYP2A6. The tree 

was constructed using nonsynonymous divergence as the distance metric. mRNA = messenger RNA. In the bottom fi gure (B), 

protein structure analysis predicts that CYP2A6*2 will have reduced function. Leucine 160 is buried inside the hydrophobic core 

of CYP2A6, where a substitution to histidine in CYP2A6*2 would be predicted to destabilize the protein. Picture drawn with 

ProteinWorkshop.77 
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more phenotypes and one or more genetic 
polymorphisms. If there is no prior 
knowledge about the potential relationships 
between these genetic polymorphisms and 
the phenotype, one implicitly assumes a 
completely connected network, in which 
any polymorphism can affect any phenotype 
by any path. An example of such a network, 
for the genes and phenotypes considered 
in this paper, is shown in fi gure 12.2A. 
In this network, each polymorphism is 
assumed, prior to data analysis, to have 
an equal probability of affecting the 
phenotype. All interaction terms are also 
considered a priori to be equally probable. 
The model makes no assumptions about 
the underlying mechanisms by which 
genetic (or environmental) perturbations 
will propagate to the phenotypes of interest. 
In this sense, it is hypothesis free, although 
in practice most genetic association 
studies focus on “candidate genes” that are 
hypothesized a priori to have a potential 
role in a particular phenotype. 

An increasing amount of information is 
becoming available about the underlying 

structure of these systems networks, 
which can be applied to genetic association 
studies. Computational representations are 
now available for a number of biochemical 
pathways,78 modeling detailed (mostly 
intracellular) interactions between proteins, 
genes, and small molecules. One relevant 
example is the nicotine metabolism pathway 
now available in the HumanCyc79 and 
PANTHER Pathways80 databases. Higher-
level representations are also available that 
model the relationships between various 
“constructs” (concepts) in a fi eld, such 
as nicotine dependence, withdrawal, and 
smoking relapse.81 These data sources can 
be used to define a network structure that 
relates genetic and environmental variables 
to phenotypes (and endophenotypes) 
in a detailed manner, as illustrated in 
figure 12.2B. This network differs from 
the network in figure 12.2A in two main 
aspects. First, the actual number of edges 
(connections) can be much smaller than 
in the “hypothesis free” network, which 
reduces the “search space” of likely models 
for genotype-phenotype effects. Second, 
there are intermediate nodes between 

Figure 12.2 Examples of Networks 

Note. Shown is a generalized network of genes and all possible relations within the nicotine metabolism pathway. 3HC/COT =  

trans 3-hydroxycotinine to cotinine ratio. 
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Figure 12.2 Examples of Networks (continued) 

Note. Shown is a simplifi ed Nicotine Pharmacokinetics Ontology. 3HC/COT =  trans 3-hydroxycotinine to cotinine ratio. 
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Figure 12.2 Examples of Networks (continued) 

Note. Shown is the network characterization of the effect of each gene (via the test statistic T) and its impact on the outcome of 

interest (either nicotine clearance or 3’-OH-cotinine to cotinine ratios) and the relations to each other as specifi ed in the ontology. 

genotype and phenotype that can serve as 
“endophenotypes,” which can be assayed 
to model (and validate) mechanistic 
relationships between genotype and 
phenotype. For the purposes of this paper, 
the network structure can be used to 
estimate prior probabilities of effects and 
interactions that are different for different 
genetic and environmental variables, as well 
as for different interaction terms. 

Using Ontologies to Represent Prior 
Knowledge About Relationships 
Between Variables 

In genetic association studies, there is 
often prior knowledge of relationships 
that is applied to hypothesis testing. 
The most commonly used relationships 
are physical or genetic distance-based 
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relationships between individual single-
position genotypes, such as LD, or, for 
functional relationships, presence in 
the same gene or in a list of “candidate 
genes.” Candidate genes are generally 
selected using prior knowledge, such as 
previously reported associations with the 
same or similar phenotypes or known or 
hypothesized biological relationships. Here, 
it is suggested that ontologies provide a 
useful formalization of these relationships, 
enabling the incorporation of multiple types 
of prior knowledge into computational 
analyses of genetic association data. 

The goal of genetic association studies 
is to uncover statistical correlations 
between genetic (germline) variation and 
phenotypic variation. To be useful for 
genetic association studies, an ontology 
must represent concepts (or “entities”) 
in the domains of both genotypes and 
phenotypes and the relations between 
these concepts. 

An ontology is a formal structuring of 
knowledge.82 For the purposes here, an 
ontology is a formal model of a domain 
of knowledge, and consists of entities and 
relations between entities. An entity is 
simply a class, or category, of things that 
one wishes to model. An entity can be 
either a continuant (an object existing at 
a particular point in time) or an occurrent 
(an event or process occurring over time). 
Relations can be of many types, depending 
on the knowledge domain being represented, 
but two of the most common are the “is_a” 
relation, which specifies one class as a 
subclass of another (for example, human 
is_a mammal), and the “part_of” relation 
(e.g., finger part_of hand). Ontologies have 
their origins in Aristotelian philosophy, 
but computer science has driven a 
renaissance in ontology development 
and use—namely, by the problem of 
representing computational knowledge 
in the artificial intelligence field and the 
Semantic Web. 

Why Build an Ontology? 

Formalizing a particular knowledge 
domain can have two main impacts on a 
scientific research field. First, it can help 
to clarify and communicate the (often) 
implicit models used by scientists to 
formulate and test hypotheses. It clarifi es 
the models by making them formal and 
explicit. Trying to formalize an implicit 
model can often be a useful exercise in 
itself, but for knowledge domains that are 
too large or complex for a single scientist 
to be an expert in all relevant subdomains, 
it is critical. A structured representation 
can help to clearly communicate a model 
to other researchers and allow iterative 
community development and revision of 
the model. 

Second, an ontology can make expert 
domain knowledge accessible to 
computation. A computer may not yet 
“understand” the knowledge (in the human 
sense, whatever that means), but it can take 
advantage of the relations between entities 
in computational models and numerous 
useful algorithms, such as those aiding 
humans to find relevant information on 
the Web. The focus in this paper is on one 
such application: ontologies can facilitate 
the building of computational models 
for the testing of genotype-phenotype 
associations. 

Clearly, then, ontology development 
will have the greatest impact on a given 
scientific area of inquiry when the fi eld 
is sufficiently complex to be beyond the 
expertise of (most) single researchers. 
Such fields are interdisciplinary almost 
by definition, including or depending on 
many subfields of specialized expertise. 
As noted by Karp,83 a scientific theory can be 
structured “within a formal ontology so that 
it is available for computational analysis.” 
The resulting computational symbolic 
theory enables “analysis and understanding 
for theories that would otherwise be too 
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large and complex for scientists to reason 
with effectively.” 

How To Build an Ontology Relating  
Genotypes and Phenotypes 

Ontologies have been developed for a 
number of biomedical domains, including 
anatomy, gene function, biochemical 
pathways and mutant and strain phenotypes 
in experimental model organisms such 
as mouse, zebrafish, fruit fly  , and yeast. 
The experiences of these groups, as well 
as groups from other domains, have led 
to a number of proposed best practices for 
ontology development.84–88 Here, the focus 
is on building an ontology that relates 
genotypes and phenotypes. A well-known 
ontology development process89 has been 
adopted for this purpose. 

Step 1: Determine the domain and scope. 
A genotype-phenotype ontology must 
include concepts from the molecular level 
(such as gene and genetic variation) to the 
phenotypes (such as a disease), including 
any intermediate-level concepts that may 
bridge the genotype-phenotype gap (such 
as biochemical pathways, or particular cell 
types or organs). Obviously, the concepts 
will be specific to the phenotype(s) of  
interest. This is a good point in the process 
to define “competency questions”; 90 these are 
questions that the ontology, once completed, 
should be able to address. For a genotype-
phenotype ontology, the competency 
questions should cover such areas as 

■	  What are the prevailing models for 
disease etiology? 

■	  What are the relevant phenotypes/ 
endophenotypes? 

■	  What biological processes are thought, 
or hypothesized, to be involved? 

■	  What is known at the molecular level 
about these biochemical pathways and 
underlying genes? 

■	  Are there any clues from previous 
association studies, or from linkage or 
twin studies? 

■	  What are possible confounding/ 
environmental factors? 

Step 2: Consider using existing ontologies. 
As mentioned above, a number of 
ontologies exist already in the biomedical 
domain. One of the best sources for 
existing ontologies is the Open Biomedical 
Ontologies (OBO) project.91 Existing OBO 
ontologies cover many relevant domains 
such as anatomy (Foundational Model of 
Anatomy92), biological processes (Gene 
Ontology93), molecular “events” such as 
biochemical reactions (Event Ontology 
[EVO]94), phenotype-directed qualities 
(Phenotype and Trait Ontology [PATO]), 
sequence types and features, such as 
genes and genetic variation (Sequence 
Ontology95), and human disease (Disease 
Ontology [DO]). OBO ontologies are 
completely open, and most have ongoing 
active discussion groups and a process for 
community maintenance and expansion of 
the ontology. Of the ontologies mentioned 
above, all but EVO and DO are also part of 
the OBO Foundry project, which ensures 
adherence to strict principles of ontology 
development.91 

Step 3: Enumerate important terms. 
This step involves simply listing terms that 
are important in the domain of interest. 
At this point, it is not necessary to decide 
whether these terms will become entities 
(a class, or category desirable to model) or 
qualities (inherent “attributes”) of entities. 
These terms will help to refine the scope  
of the ontology and to provide the basis for 
formalizing ontology. 

Step 4: Define entities (classes) and  
relationships between entities. 
At this stage, one begins to defi ne entities 
and relationships between them. When 
possible, terms from existing ontologies 
should be used. When a new entity is 
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introduced, it is critical that a defi nition 
also be provided, to ensure that the term 
can be interpreted correctly (preferably 
even by a nonexpert). Most of the necessary 
relationship types already exist in the 
OBO Relation Ontology, although one 
additional relationship, infl uences, was 
found to be useful for describing putatively 
causal relations between entities that are 
critical for a model of the existing domain 
knowledge. For example, in the Nicotine 
Pharmacokinetics Ontology given here 
(NPKO, figure 12.2B), age  infl uences  
metabolism_of_nicotine. 

A number of software packages are available 
for simplifying the task of constructing 
ontologies. The added benefit of using 
one of these packages is that at the end 
of the process, the ontology is stored in a 
standard ontology format, such as the OBO 
format. As a result, the ontology can be 
imported into a number of software tools, 
such as those developed for the Ontology 
Web Language, or OWL,84,96 for analyzing 
the ontology for consistency and for 
computational reasoning over the ontology. 
Among the most popular packages for 
developing biomedical ontologies are OBO­
Edit97 and Protégé.98 

For biochemical pathways, the BioPAX 
Ontology99 is beginning to enter widespread 
use. Well-known pathway resources such as 
BioCyc,100 Kyoto Encyclopedia of Genes and 
Genomes,101 Reactome,102 and PANTHER103 

have made a relatively large number of 
pathways available in BioPAX format99 

and SBML (Systems Biology Markup 
Language).104 SBML has the advantage of 
being able to specify quantitative data such 
as reaction rate constants, but BioPAX has 
greater expressive capability for genomic 
and protein sequence data that is critical for 
treating genetic variation data. If a relevant 
pathway does not yet exist in suffi cient 
detail in one of these resources, PANTHER 
Pathways has a community curation 
Web site where domain experts can take 

advantage of the CellDesigner105 program’s 
interface to draw a pathway and store a 
formal ontology representation directly 
from the drawing. 

Step 5: Define qualities important 
for representing phenotypes. 
Once the entities are defi ned, qualities can 
be enumerated for each of the entities. 
The emerging standard for phenotypes 
is the PATO syntax. In this “bipartite” 
entity:quality definition, a phenotype 
(e.g., metabolic clearance of nicotine) is 
expressed as a combination of an entity 
(e.g., metabolism of nicotine) and a 
quality inherent in the entity (e.g., rate). 
Phenotypes can be quantitative or 
qualitative. For example, a particular 
chemical reaction type (entity) might 
have a rate (quality), which would then 
be specified by a particular quantitative 
measurement (value). 

Most ontology development projects begin 
with the formation of a small working 
group that brings together expertise in the 
relevant knowledge domain, with expertise 
in ontology construction. In the biomedical 
field, the National Center for Biomedical 
Ontology (NCBO) has been established; 
one of its primary missions is to provide 
the ontology construction expertise to 
facilitate development of new ontologies for 
biomedical applications.106 The NCBO is an 
excellent resource for expert guidance and 
software tools for this purpose. 

The product of the initial working group is 
a draft ontology. If appropriate, this draft 
ontology can provide a framework and 
starting point for a larger, community-
driven project to expand and refi ne the 
ontology. At this point, the ontology enters 
a completely new phase of development. 
Community projects such as this require 
an infrastructure for managing discussions 
to come to a resolution on proposed 
changes and then rapidly incorporate 
accepted changes to the ontology. The OBO 
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project provides a platform for facilitating 
community ontology projects, leveraging 
resources originally designed to support 
Open Source software development projects, 
such as the SourceForge Web site.107 

Example: Nicotine 
Metabolism 
Data 

As an example, data are used from a study 
involving the volunteer-based Northern 
California Twin Registry.1,2 This study of 
the heritability of nicotine metabolism 
included 278 individuals between the 
ages of 18 and 65 years. Individuals 
were excluded for the following: greater 
than 30% above normal weight range; 
pregnancy; use of known drug metabolism-
altering medications (e.g., barbiturates, 
phenytoin, rifampin [or INN, rifampicin]); 
uncontrolled hypertension or diabetes; 
heart, lung and cardiovascular disease; 
cancer; liver and kidney diseases; substance 
abuse or dependence; positive human 
immunodeficiency virus status; history 
or evidence of hepatitis B or C; and 
discomfort with venipuncture procedures. 
Both nonsmokers and smokers were 
recruited. Further details regarding the 
study description can be found elsewhere.1,2 

Quantitative data were obtained to measure 
the impact of genetic variants on the 
disposition kinetics and metabolism of 
nicotine after systemic administration. 
As such, participants of the twin study 
were administered intravenous deuterium-
labeled nicotine and cotinine (the major 
proximate metabolite of nicotine) and blood 
samples were obtained for genotyping. 
From blood concentrations obtained 
at intervals over 72 hours and urinary 
excretion data, pharmacokinetic parameters 
were estimated using model-independent 
methods.108 Here, attention is confi ned to 
two outcomes of interest: the total clearance 

of nicotine, and trans 3-hydroxycotinine 
to cotinine ratio (3HC/COT). Trans 3­
hydroxycotinine is the major metabolite 
of cotinine, and its formation is catalyzed 
almost or entirely exclusively by CYP2A6, 
the enzyme that is primarily responsible 
for the metabolism of nicotine. The 
3HC/COT ratio has been used as a marker 
of CYP2A6 activity and of the clearance rate 
of nicotine.109 Because this data set has a 
limited number of smokers, and previous 
analyses have demonstrated that inference 
for pharmacokinetics of nicotine remained 
largely unchanged after controlling 
for smoking status, smoking status is 
not included in the present analysis for 
simplicity. The analysis is limited to only 
Caucasians (N = 211), and age is included 
as the only covariate for demonstration 
purposes. Genotypes available for analysis 
include “wild-type” CYP2A6*1 and its most 
common variants: CYP2A6*2, CYP2A6*4, 
CYP2A6*7, CYP2A6*8, CYP2A6*9, 
CYP2A6*10, CYP2A6*12; four SNPs within 
CYP2B6; a single SNP within CYP2D6; 
seven SNPs in UGT1A4; and four SNPs in 
UGT2B7. 

Analysis 
To begin, a univariate analysis was 
performed by comparing the means for 
the kinetic parameters by each variant 
by using a mixed linear model for the 
fi rst-stage likelihood, , in  
which a random effect is included for 
twins to control for nonindependence. 
For CYP2A6, a previously reported analysis 
was followed,108 and three categories 
were created on the basis of the impact of 
individual genotypes on nicotine clearance, 
fractional clearance, cotinine clearance and 
the 3HC/COT ratio: (A) *1/*1; (B) *1/*9  
or *1/*12; and (C) any of the following 
variants: *1/*2, *1/*4, *9/*12, *9/*4, *9/*9  
(CYP2A6*7, *8, *10 were not found in this 
data set). Thus, the linear model has two 
dummy variables for groups (B) and (C), 
reflecting the difference in means relative  
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to the referent group (A). For the remaining 
SNPs in the other genes, an additive 
coding representing the number of variant 
alleles was used. For the three SNPs 
with individuals with missing genotypes, 
the expected coding was substituted as a 
function of allele frequency. While this 
may result in an underestimated variance, 
one should not expect an appreciable 
difference in that the number of individuals 
with missing values is small (N = 1, 6, 
or 7, respectively). Age is included as a 
continuous covariate in every model. 

For the hierarchical stochastic search, 
the first step was to outline a full model in 
which there are 18 main effects for gene 
polymorphisms (two dummy variables 
for CYP2A6 and 16 SNPs across the 
other four genes), one main effect for 
age, and 170 pairwise interaction terms 
that include within and across gene 
interactions and gene-by-age interactions. 
For interpretability, the two dummy 
variables for CYP2A6 are always included 
in the model together. Because the SNPs 
within a single gene were in relatively 
low LD, only the conventional interaction 
term (i.e., a deviation form additivity) was 
modeled and a phase term as described 
in equation (5) was not created. For the 
stochastic search, a hierarchical constraint 
on interaction terms was included, allowing 
interactions in the model only if their 
parental main effect terms are included. 
For this example, interaction terms were 
included to illustrate the feasibility and 
computational challenge of searching 
over a substantial model space. However, 
in this particular application, one should 
not expect to be able to detect interaction 
effects because of the limited sample size. 
Under favorable assumptions for two genes 
interacting (i.e., common allele frequencies 
and a large effect size—comparable to that 
observed in Benowitz and colleagues108 for 
the main effect of CYP2A6)—the power to 
detect an interaction with this sample is 
about 10%–20%. 

Ontology and Incorporation 
into the Hierarchical Stochastic 
Search Model 

An Example Ontology Linking 
Genotypes and Phenotypes 
for Nicotine Pharmacokinetics 

As part of the Pharmacogenetics of 
Nicotine Addiction and Treatment project 
funded by the National Institute on Drug 
Abuse, the authors of the chapter are 
developing a draft ontology in the areas of 
nicotine pharmacokinetics, dependence, 
and treatment outcomes. Figure 12.2B 
shows part of the initial draft of the NPKO 
relevant to the outcome phenotypes 
addressed in this paper. The ontology 
has several notable properties. First, it is 
hierarchical (more properly, the structure 
is a directed acyclic graph, or DAG, meaning 
that a child class can have more than one 
parent). Second, it spans the range from 
genotype to phenotype, representing 
high-level phenotypes, intermediate-level 
“endophenotypes” down to molecules 
and genotypes. Third, phenotypes are 
represented using the emerging PATO 
standard,110 shown as two adjacent ontology 
terms, an entity (black typeface) and a 
quality (blue typeface) in fi gure 12.2B. 

Using the Nicotine Pharmacokinetics 
Ontology to Derive Priors 

A discussion follows on how the information 
encoded into the ontology can help to defi ne 
priors in the context of the Bayesian model 
selection process outlined previously. 

What does figure 12.2B reveal in terms of 
prior information regarding the infl uence 
of genes on the phenotypes? In other 
words, how might the different effect 
estimates as summarized in the test 
statistics be related to each other? The fi rst 
phenotype, 3HC/COT, is the ratio of the 
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concentrations of 3HC and cotinine, and 
therefore variation in any genes connected 
in the network (figure 12.2B) to either 
3HC or cotinine, or both, could have an 
effect on this ratio. CYP2A6 catalyzes the 
conversion of 3HC to cotinine, which would 
clearly be expected to have the primary 
effect on the 3HC/COT ratio. However, 
since UGT1A4 activity depletes cotinine by 
conversion to cotinine-glucuronide and 
UGT2B7 activity depletes 3HC by conversion 
to 3HC glucuronide, variation in both 
UGT1A4 and 2B7 could also affect the 
3HC/COT ratio. 

The second phenotype, metabolic clearance 
of nicotine, relates to the rate at which 
nicotine is converted to other compounds. 
In the simplified NPKO (figure 12.2B), there 
are two pathways for nicotine metabolic 
clearance: nicotine can be converted into 
either cotinine or nicotine glucuronide, 
reactions catalyzed by CYP2A6 and UGT1A4, 
respectively. The ontology, therefore, 
specifies that variation in both CYP2A6 
and UGT1A4 would be expected to affect 
nicotine metabolic clearance. One can use 
further prior information—namely, in most 
individuals, more nicotine was found to be 
metabolized through the cotinine pathway 
than the nicotine-glucuronide pathway, by 
a factor of about 15,111 to specify the prior 
belief that CYP2A6 variation will have a 
larger effect on nicotine metabolic clearance 
than does UGT1A4. The relative rates of 
these reactions are stored in the ontology 
in the following form: 

conversion_of_nicotine_to_nicotine_ 
iminium_ion:relative_ _rate 

Compar conversion_of_nicotine_to_ 
nicotine-glucuronide 

M 15, 

where Compar denotes “in comparison to” 
and M denotes “measurement,” using the 
PATO standard terms. 

The relations between genes and 
phenotypes, represented in the ontology 
(figure 12.2C), therefore provide a list of 
nonzero priors for the effects of variation in 
each gene on each of the phenotypes. They 
also provide expected relative contributions 
to the phenotype; namely, CYP2A6 is 
expected to have the primary effect on both 
3HC/COT and nicotine metabolic clearance. 
For simplicity, the expected effect of CYP2A6 
on the 3HC/COT ratio was set to be four 
times as large as the expected effect of either 
UGT2B7 or UGT1A4. The ontology can also 
provide prior effect estimates for gene-gene 
interactions. CYP2A6 and UGT1A4 are both 
involved in the two phenotypes, nicotine 
clearance and 3HC/COT, so the gene-gene 
interaction term is expected to be nonzero 
for these two genes in both phenotypes. 

Finally, relatively little is known regarding 
the specific polymorphisms within each 
gene, so a single prior value applicable to 
all SNPs within a gene is assigned. Taken 
together, the ontology yields the following 
matrix of priors: 

Metabolic 
clearance 3HC/COT 

Gene of nicotine ratios 

CYP2A6 4 4 

CYP2B6 0.5 0.5 

CYP2D6 0 0 

UGT1A4 1 1 

UGT2B7 0 1 

CYP2A6-UGT1A4 1 1 

All other interactions 0 0 

Incorporating Priors into Statistical 
Analysis 

In addition to the above prior covariates for 
each respective analysis, an intercept term 
and a dummy prior covariate are included 
for main effects versus interaction effects. 
The same prior covariates are used for both 
the means and probability portions of the 
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mixed model. Furthermore, in the means 
model, the intercept of the noncentrality 
parameter ev is constrained to be equal to 
the expectation of a chi distribution under 
the null of no associated terms in the 
regression model for identifi ability. This 
causes the interpretation of the remaining 
effects of the prior covariates on the 
magnitude—that is, the ls—to refl ect a 
deviation from the null expectation. In the 
probability portion of the model, p0 = 1 
and p1 < 0 are constrained, corresponding 
to the effects of all the terms and the main 
effects on the probability of inclusion. These 
constraints limit the inclusion of main 
effects via p1 and thus guide the stochastic 
search to more parsimonious models 
in terms of the number of main effects 
included in the model. This is important 
in that the relatively small sample size in 
this example (N = 211) prohibits the fi tting 
of models with too many main effects. 
However, once a set of main effects is 
included in a model, one wants to encourage 
the exploration of models with interactions. 
Thus, by setting p0 = 1, the expectation of 
the inclusion of an interaction conditional 
on the inclusion of the parental main effects 
is relatively high (21). 

Sensitivity to Prior Specifi cation 

To compare and investigate the sensitivity 
of inference to the prior covariate 
specification, two alternative specifi cations 
are used. First, the above prior covariate 
matrix is altered by the assumption that 
CYP2A6 has the same impact as UGT1A4. 
This is accomplished by replacing the “4” 
with a “1” in the previously described prior 
covariate matrix. Second, in assuming 
that the prior knowledge is limited, 
a prior covariate design matrix is used 
with five dummy variables indicating the 
gene in which a specifi c polymorphism 

is found. Here, it is assumed that all 
the polymorphisms within a gene are 
exchangeable or share a common mean 
with a different mean for each gene. This 
allows sharing among polymorphisms 
within a gene, but not across genes. 

Results 

Univariately, polymorphisms for groups 
(B) and (C) for CYP2A6 were signifi cantly 
associated with measured nicotine 
clearance levels as seen in table 12.1 
(tB = 2.15, p-value = 0.03; tC = 3.86, 
and p-value = 0.0002, respectively). In 
addition, SNP 4 within UGT1A4 had a 
statistically significant result (tSNP4 = 2.19, 
p-value = 0.03). Because of the small sample 
size, a model could not be fitted in which all 
possible polymorphisms were included as 
represented in equation (2), thus limiting 
any further exploration of full joint models 
with interactions without some type of 
model selection procedure. 

The hierarchical stochastic search model 
was implemented by using the statistical 
software R.112 Posterior inference was based 
on 50,000 samples from a single chain 
after discarding the first 10,000 samples 
(i.e., burn-in) to ensure that the fi nal 
inference is independent of the starting 
values.113 Visual inspection of time series 
and sensitivity to inference over time 
was used to check for convergence and 
model performance. The burn-in period 
was selected because it was found that the 
constraints in both the means and the 
probability portions of the model allowed 
for a nonzero probability of including any 
given main effect in the model. This results 
in sufficient mixing within the model 
space and a very limited dependence on 
the starting model. For example, under 
the null of no association between any 

(21)
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Table 12.1 Results for Nicotine Clearance
 

Univariate Hierarchical model 

Gene Variant T 1 p-value 2 3 
 
4 5

CYP2A6 Group A 
(*1/*1) 

— — — — — — 

Group B 
(*1/*9 or *1/*12) 

2.15 0.03 3.53 0.09 3.16 17.38 

Group C 
(*1/*2; *1/*4; *9/*12; 
*9/*4; *9/*9) 

3.86 0.0002 3.53 0.94 534.37 17.38 

CYP2B6 SNP 1 1.22 0.23 2.14 0.02 0.62 0.82 

SNP 2 1.82 0.07 2.27 0.04 1.33 0.82 

SNP 3 1.56 0.12 1.78 0.04 1.36 0.74 

SNP 4 1.69 0.09 2.32 0.03 0.90 0.82 

CYP2D6 SNP 1 0.21 0.83 1.51 0.02 0.49 0.70 

UGT1A4 SNP 1 0.38 0.70 2.19 0.01 0.40 0.84 

SNP 2 0.02 0.98 2.18 0.01 0.40 0.84 

SNP 3 0.07 0.94 1.64 0.02 0.56 0.81 

SNP 4 2.19 0.031 2.01 0.08 3.90 0.76 

SNP 5 0.55 0.58 1.69 0.02 0.52 0.77 

SNP 6 1.57 0.12 2.43 0.02 0.75 0.81 

SNP 7 0.81 0.42 2.16 0.02 0.65 0.84 

UGT2B7 SNP 1 1.22 0.23 1.58 0.03 0.84 0.73 

SNP 2 0.12 0.90 1.83 0.02 0.42 0.76 

SNP 3 0.50 0.62 1.53 0.02 0.54 0.67 

SNP 4 0.05 0.96 2.23 0.02 0.58 0.73 

Note. Results were obtained by using a conventional univariate regression analysis and from the hierarchical stochastic search by 


using informative prior covariates derived from the ontology.
 
1The absolute value of the v test statistic obtained from the Wald-type test from a univariate regression model.
 
2Posterior expectation of the v test statistic.
 
3Posterior expectation of the probability that the association is true.
 
4Bayes factor for the probability that the association is true.
 
5Bayes factor for the inclusion of the corresponding term in the regression model.
 

polymorphisms and nicotine, the average 
probability of including any term was 3%. 
This encourages sampling the model space, 
but since the probability of including a term 
is nonzero under the null, it also highlights 
the need to compare posterior estimates 
of the probability of a true association and 
the probability of including a given term 
conditional on the data to those under 
the null via Bayes factors to obtain valid 
inference. To guarantee suffi cient mixing 
within the local model space, a random 

walk over 500 iterations was incorporated in 
which an additional main effect to the model 
under evaluation was included. 

The focus initially is on the posterior 
estimates of the magnitude of the 
association for nicotine clearance. Recall 
that the ontology specified that the two  
groups of polymorphisms in CYP2A6 would 
have twice the effect of polymorphisms 
in UGT1A4 and that there would be no 
effect for all other variants in other genes. 
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Figure 12.3 Shrinkage of Test Statistics 

Note. Shown is the shrinkage of the univariate test statistics T by the hierarchical stochastic search to yield the posterior 

estimates of effect size . For each term, the test statistic obtained from the univariate analysis is paired with the posterior 

estimate, demonstrating shrinkage to a conditional mean specifi ed by the prior covariate structure. 

This structure is reflected in the posterior  
estimates for summarized in table 12.1. 
The two groups of polymorphisms in 
CYP2A6 have similar posterior estimates of 

CYP2A6,B = 3.53 and CYP2A6,C = 3.53. Similarly, 
the estimates for the posterior magnitude of 
the test statistics for SNPs within UGT1A4  
are shifted toward each other, albeit at a 
lower magnitude. The combined effect of 
the prior covariates is more clearly seen 
in figure 12.3, which demonstrates the  
shrinkage of the original test statistic to 
the posterior estimates. First, by grouping 
all main effects via the second covariate in 
Zl , all the posterior estimates are shrunk 
upward toward a group effect. Furthermore, 
within this upward shrinkage, the prior 
covariate based on the ontology allows 
further borrowing of effects within CYP2A6  
(the bold solid lines) to be four times the 
magnitude of that of the SNPs within 

UGT1A4 (the thin solid line). All other 
polymorphisms (dashed lines) have upward 
shrinkage based solely on the grouping of 
main effects. 

In focusing on the posterior estimates of the 
probability of a true association  , it can be 
seen that CYP2A6 group C has a much larger 
probability of being true ( CYP2A6,C = 0.94) in 
comparison with group B ( CYP2A6,B = 0.09) 
despite their similar posterior estimates 
for . This is due to the contribution of 
the data for each polymorphism group 
reflected through their corresponding fi  rst­
stage test statistic of T = 3.86 and T = 2.15, 
respectively. Furthermore, because the 
posterior probability is not zero under the 
null, inference into the significance of this  
estimate should be made via the Bayes 
factor. Here, very strong evidence can be 
seen for a true association for group C in 
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CYP2A6 (BF( CYP2A6,C ) = 534.37) as well 
as positive evidence for an association of 
group B in CYP2A6 (BF( CYP2A6,C ) = 3.16). 
In addition, an indication can be seen for 
positive evidence of an association for 
SNP 4 in UGT1A4 with BF( UGT1A4,4 ) = 3.90. 
Although these conclusions are qualitatively 
similar to conclusions based on the results 
obtained from the univariate analyses, there 
are some notable differences. For example, 
the test statistics obtained for group B 
in CYP2A6 and for SNP 4 in UGT1A4 are 
similar, suggesting comparable evidence 
for an association. However, they have very 
different posterior estimates for with 

CYP2A6,B = 3.53 and UGT1A4,4 = 2.01, refl ecting 
the borrowing of information via the prior 
structure; mainly, the test statistic for 
group B is shrunk upwards toward group C 
within CYP2A6. When one accounts for 
the influence of the prior structure and  
focuses on the Bayes factors for a true 
association, there is slightly more evidence 
for SNP 4 in UGT1A4: BF(  UGT1A4,6 ) = 3.90 
versus BF( CYP2A6,B ) = 3.16. The evidence for 
group B is tempered because of the strong 
prior for the infl uence of CYP2A6—that is, 
it would have a fourfold increase in effect. 
In contrast, it was believed that UGT1A4  
would have a much smaller effect, and thus, 
the impact of the data relative to the prior 
is greater. 

The hierarchical stochastic search model 
did not find any evidence for interactions 
between polymorphisms or between the 
polymorphisms with age. Most likely, this 
is mainly a reflection of the limitations 
for obtaining statistical signifi cance for 
interactions with such a small sample size 
(N = 211) of a narrow age range. However, 
one of the major goals of incorporating 
prior knowledge was to have an effi cient 
stochastic search across the model space. 
In this regard, guiding the stochastic search 
via the proposal distribution as a function 
of the probability that an association is true 
results in a very high acceptance rate during 
the MCMC iterations (across the various 

analyses, on average 90% of the proposed 
models are accepted). At first glance, this 
high acceptance rate may indicate poor 
mixing in the MCMC chain, leaving one 
unable to move around in the model space. 
To some extent, the exploration of the 
entire space is limited, but sampling of 
models believed to be more biologically 
plausible is actively encouraged. Specifi cally, 
the prior structure given from the ontology 
indicates the desirability of investigating 
interactions between CYP2A6 and UGT1A4. 
As evidence of a guided search, it was found 
that, conditional on the inclusion of the 
two polymorphism groups within CYP2A6, 
interactions with SNPs within UGT1A4 are 
included in 3% of the models searched. 
In contrast, in performing a stochastic 
variable selection and substituting a 
binomial proposal distribution that is not 
dependent on a prior structure but has 
probabilities reflective of the hierarchical 
model under the null, it is found that 
interactions between CYP2A6 and UGT1A4 
are included in less than 0.1% of the 
models searched. 

To gauge the sensitivity of the results to 
prior specification, two additional analyses  
were run using different prior covariates. 
To mimic the influence of incorrect priors  
and assuming a lack of knowledge for 
CYP2A6, a “1” was substituted in place of 
the “4” for CYP2A6 in the previous prior 
covariate matrix. This had little impact 
on the final inference in regard to the  
posterior estimates corresponding to 
CYP2A6, further indicating that the data are 
driving the results for CYP2A6. However, 
under this prior structure, estimates for 
polymorphisms within UGT1A4 were 
slightly attenuated because they were no 
longer shrunk upward toward the CYP2A6  
estimates, for SNP 4 UGT1A4,4 = 1.73. Despite 
the change in estimates, the Bayes factor for 
the posterior probability of a true association 
still indicated some positive evidence for 
SNP 4, BF( UGT1A4,4 ) = 3.81. With the gene-
specific prior covariate matrix that includes  
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a set of dummy variables indicating which 
gene an SNP is in, qualitatively similar 
results are found. Of course, inference in 
terms of both posterior estimate and the 
magnitude of the Bayes factors varies, 
reflecting differences in the borrowing 
of information across polymorphisms as 
specified by the prior structure (results 
not shown). 

Results for the analysis in regard to 3HC/COT 
are presented in table 12.2. As before, similar 

Table 12.2 Results for 3HC/COT Ratios 

patterns are apparent in posterior estimates 
with the most notable evidence provided 
for the two groups of polymorphisms in 
CYP2A6. Of note are the estimates for SNPs 
in UGT2B7. For 3HC/COT, a prior covariate 
matrix was specifi ed that placed a slight 
emphasis on UGT2B7 in conjunction with 
CYP2A6. For the posterior estimation for 
the magnitude  , the four SNPs in UGT2B7  
are shrunk upward, refl ecting a borrowing 
of information from the larger CYP2A6  
estimates. 

Univariate Hierarchical model 

Gene Variant T 1 p-value 2 3 
 
4 5

CYP2A6 Group A 
(*1/*1) 

— — — — — — 

Group B 
(*1/*9 or *1/*12) 

-2.53 0.01 4.39 0.09 2.83 13.87 

Group C 
(*1/*2; *1/*4; *9/*12; 
*9/*4; *9/*9) 

-4.9 4.0E-06 4.39 0.92 291.79 13.87 

CYP2B6 SNP 1 -1.47 0.15 1.17 0.06 1.28 1.10 

SNP 2 2.39 0.02 1.35 0.14 3.47 1.02 

SNP 3 1.31 0.19 1.16 0.04 1.02 0.64 

SNP 4 2.18 0.03 1.22 0.09 2.25 1.05 

CYP2D6 SNP 1 -0.51 0.61 1.32 0.03 0.58 0.86 

UGT1A4 SNP 1 0.13 0.90 0.95 0.03 0.71 1.03 

SNP 2 -0.68 0.50 1.00 0.03 0.77 1.03 

SNP 3 0.93 0.35 0.98 0.04 1.03 0.97 

SNP 4 1.56 0.12 1.02 0.05 1.19 0.86 

SNP 5 0.89 0.38 0.95 0.03 0.80 1.00 

SNP 6 1.55 0.12 0.97 0.04 1.20 1.06 

SNP 7 -0.34 0.74 0.94 0.03 0.71 1.00 

UGT2B7 SNP 1 -0.94 0.35 1.03 0.03 0.87 1.05 

SNP 2 0.16 0.87 0.86 0.03 0.80 0.97 

SNP 3 0.6 0.55 0.95 0.04 1.08 1.05 

SNP 4 -2.49 0.01 1.36 0.17 4.90 1.16 

Note. Results were obtained by using a conventional univariate regression analysis and from the hierarchical stochastic search by 


using informative prior covariates derived from the ontology. 3HC/COT = trans 3-hydroxycotinine to cotinine ratio.
 
1The absolute value of the v test statistic obtained from the Wald-type test from a univariate regression model.
 
2Posterior expectation of the v test statistic.
 
3Posterior expectation of the probability that the association is true.
 
4Bayes factor for the probability that the association is true.
 
5Bayes factor for the inclusion of the corresponding term in the regression model.
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Discussion 
Statistical modeling does have limits, 
especially when evaluating multiple 
exposures and genes with a limited 
sample size. In light of these limitations, 
conventional univariate analyses can be 
appealing in their ease of implementation 
and straightforward interpretation. However, 
building upon the knowledge that guided 
the initial selection of the SNPs and genes 
for investigating, most researchers feel 
compelled to go beyond the independent 
treatment of each gene and attempt to 
model more complex joint action and 
interactions. Often, this includes ad hoc 
criteria for model building on the basis of 
prior biological knowledge with the analyst 
balancing the complexity of each model 
investigated with real world limitations of 
the data, such as multicolinearity, sparse 
data bias, and instability. Rarely do fi nal 
models accurately reflect the statistical 
costs in terms of multiple comparisons or 
the uncertainty in arriving at a given “best” 
model. As an alternative, the analyst may opt 
to use strictly data-driven approaches and 
search for significant interactions by using 
statistical criteria. Within this context, the 
method presented here represents the use of 
a hierarchical model together with a means 
of using prior knowledge to guide statistical 
model selection by means of an ontology. 

The idea of placing more emphasis on 
more biologically relevant SNPs is not 
new. Several other approaches have 
been presented. The false positive report 
probability uses prior information in the 
form of an investigator’s prior belief that 
an association is true. Likewise, a weighted 
FDR and Bayesian FDR approach have 
been presented to incorporate outside 
information on the a priori impact of a 
particular SNP. However, these approaches 
rely on prespecification of the weight or 
prior for every SNP and interaction term 
without allowing the data to enhance 

or attenuate the influence of the prior 
information. In contrast, the hierarchical 
modeling approach discussed here relies on 
prespecification of only how it is believed 
that SNPs and interaction terms are related, 
but it relies on the data to determine 
the degree or the weight of the various 
specifications or prior covariates. This has 
the advantage of giving some fl exibility in 
the prior specification, and correspondingly, 
final inference and conclusions may be 
less sensitive to those specifi cations. 
Thus, the posterior estimates for the 
importance of each term and interaction 
are conditional on the prior knowledge, 
and within this modeling framework 
these parameters are naturally interpreted 
in the context of that knowledge. This 
avoids having post hoc justifi cation and 
rectification of conventional results with 
what is known. As knowledge changes, 
the analyses can be rerun to gauge how 
new knowledge combined with the sampled 
data may alter final conclusions. While 
sensitivity analysis is a vital part of any 
comprehensive Bayesian analysis, with 
subjective priors one does not expect the 
results to be quantitatively similar across a 
variety of prior structures. In fact, the goal 
is just the opposite. One would like to use 
subjective knowledge as a guide to models 
that would not have been found otherwise 
or to enhance posterior estimates that may 
have been overlooked without shrinkage 
to other SNPs or genes. But, one must also 
be careful that the final inference does not 
solely refl ect specific prior beliefs. The use 
of Bayes factors gauges the evidence for the 
conclusions conditional on the data and in 
the context of the priors. 

Ultimately, it is a fine line between 
deterministic weights and informative 
priors. The authors of this chapter believe 
that this line is drawn by the quality of 
the prior information. While much has 
been done with hierarchical modeling in 
epidemiological analysis, relatively little 
research has been done on the quality of 
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the prior covariate specifi cation. Here, 
an approach is described that attempts 
to formalize the prior knowledge via an 
ontology. Ontologies provide a mechanism 
for investigators to specifi cally structure 
their prior knowledge in a usable format. 
Of course, what is specified in the ontology 
is not the truth, but only reflective of the 
available state of knowledge. As such, 
ontologies can and should be dynamic. 
In fact, how an ontology changes over 
time is instructive in indicating areas for 
advancement and further research. 

Ontologies provide a structure for encoding 
prior knowledge or hypotheses. The existing 
PATO syntax allows for specifying 
relationships between concepts and for 
specifying relative quantities. An example 
has been given of how both relationships 
and relative quantities can be used to 
derive priors in the context of Bayesian 
model selection, which is, as far as known, 
a novel application of biological ontologies. 
The ontology provided a structure for 
estimating the prior probability that a given 
gene is involved in a phenotype of interest, 
as well as the probabilities that different 
pairs of genes interact with each other. 

The part of the NPKO used here is based 
on extensive evidence from experimental 
studies, but it would also be possible 
to encode a more speculative, and even 
completely untested, hypothesis into 
an ontology structure to guide model 
selection. These priors would ensure that 
the hypothesis will be tested, with high 
probability, during the model selection step. 
Of course, whether the hypothesis is accepted 
will depend on the posterior probabilities 
after considering the data, and the strength 
of the evidence as reflected, for example, 
in the Bayes factors reported here. 

In the example given, the ontology structure 
has been converted into quantitative 
priors by using expert interpretation. 
The reasoning followed was simple 

and could be straightforwardly coded 
into a computational algorithm. Graph 
connectivity was used between phenotypes 
and genes to determine which priors 
would be nonzero: if a gene was closely 
connected to the phenotype of interest, 
the prior was set to be greater than zero. 
Relative measurements (of reaction rates, 
in this case) was also used from previous 
experiments to set the relative values of 
nonzero priors. 

One can expect that one of the most 
valuable contributions of an ontology for 
larger studies will be in prioritizing the 
testing of potential gene-gene and SNP-SNP 
interactions. The sample data set used was 
too small to draw any conclusions regarding 
interactions, but for larger studies that 
assay a large number of polymorphisms, 
prioritizing interactions will be critical. 
Ontologies are one way of estimating a 
priori probabilities of different interactions. 
For instance, genes that are closely 
connected in the ontology relationship 
network can be hypothesized as being more 
likely to interact. 

Finally, it is straightforward to extend 
this approach to provide different priors 
for different individual polymorphisms. 
For instance, rather than setting the prior 
expected effects for all polymorphic CYP2A6 
alleles to be the same (relative to the *1/*1 
homozygote), functional polymorphism 
predictions could have been used to provide 
additional prior information. For instance, 
allele-specific priors could have been used 
for CYP2A6. The CYP2A6*9 and CYP2A6*12 
alleles are known to have reduced activity 
(*9 reduces gene expression through an SNP 
in the TATA box,114 while *12 includes exons 
from the closely related CYP2A7, resulting 
in 10 amino acid substitutions relative to 
*1 and reduced activity115). The CYP2A6*2 
allele116 has a single amino acid substitution 
that completely inactivates the enzyme, 
and, in the CYP2A6*4 allele, the entire gene 
is deleted.117 One could, therefore, have used 
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this prior knowledge (much of which could 
have been predicted from sequence data 
alone, e.g., figure 12.1) to specify different  
priors for the different CYP2A6 genotypes, 
with the largest effects expected for 
individuals having the *4 or *2 alleles. Using 
functional information about each SNP 
yields a prior probability that a given SNP 
will affect gene function. To estimate a prior 
for the effect of the SNP on the phenotype 
of interest, one could take the product of 
(1) the conditional prior of the effect of a 
gene on the phenotype of interest (given an 
effect on gene function) estimated from the 
ontology and (2) the prior of the effect of the 
SNP on gene function. 

When including ontological knowledge in 
statistical analysis, it is desirable to capture 
potential real world complexities while also 
addressing the practical limitations of the 
data—for example, sample size. It is believed 
that a stochastic variable selection procedure 
via a hierarchical model offers a potential 
approach to knowledge-based pathway 
analyses. Given modeling limitations, one 
can probabilistically restrict the number 
of terms included in any specific model via 
constraints on the conditional probabilities 
of including a given term. This limits the 
overall complexity for a regression model 
evaluated for each iteration of the stochastic 
search. However, when inference is averaged 
over all the models, one can begin to describe 
complex relations between SNPs and genes. 
In addition, it was demonstrated how prior 
knowledge can guide the stochastic search 
efficiently within the model space, yielding 
more biologically plausible models (in terms 
of the defined prior covariates). Of course, 
there is a trade-off of directing the search 
too narrowly and possibly missing some 
well-fitting models or of having a broad, 
nonfocused search in which one may spend 
most of the stochastic search in an area 
in which the models are not biologically 
relevant. Again, this hierarchical framework 
is a flexible approach that allows multiple 
sources of information (via the prior 

covariates) to be included while having 
the advantage that their actual infl uence 
on posterior estimation and the stochastic 
search does not need to be prespecifi ed but 
can be estimated from the data. 

Details of the specific performance of 
the statistical model presented here in 
terms of estimation, sensitivity to prior 
covariates, ability to identify signifi cant 
terms, and so on are being pursued in 
a separate, more statistically oriented 
paper. While this statistical framework 
makes use of MCMC methods for the 
stochastic search across the model space, 
for computational effi ciency maximum 
likelihood approaches to estimate the fi rst­
stage generalized linear model parameters 
were chosen. Thus, a simplifi cation is 
made when conditioning on the fi rst-stage 
maximum likelihood estimates when 
modeling the second-stage mixture model. 
Clearly, one can imagine a fully Bayesian 
analysis in which the uncertainty in the 
first-stage estimates is propagated into 
subsequent stages. However, for model 
selection purposes across such a large model 
space, it was decided that computational 
efficiency trumps subtle refi nement in 
estimation. Likewise, the second-stage 
mixture model uses a maximum likelihood 
estimation procedure as opposed to a 
fully Bayesian approach. Again, this 
decision was made for computational 
efficiency, and comparisons to the fully 
Bayesian approach for the mixture model 
demonstrated suitable performance.65 With 
these simplifications, the computations are 
now on the order of hours as opposed to 
days with actual times depending on the 
specific computer. In addition to statistical 
issues surrounding estimation, there are 
also issues with how one deals with missing 
data across all the variables. At the heart 
of this model selection procedure is a 
likelihood comparison that requires the 
likelihoods to be calculated on the same 
number of individuals. Thus, individuals 
cannot be removed across models. In the 
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nicotine example, analysis was limited to 
individuals with complete data or, for the 
few individuals with missing genotypes, 
an expected score was imputed. As the 
number of polymorphisms examined 
increases, the number of individuals with 
any missing data will also increase, making 
this issue a much more serious concern. 
While the specifics of missing data analysis 
is beyond the scope of this particular work, 
the MCMC procedure for model selection 
provides a flexible framework in which to 
implement an imputation strategy. 

Hierarchical modeling and stochastic 
variable selection can offer some robustness 
against multiple comparisons when deciding 
statistical significance. In 2007, Wakefi eld118 

formalized the control of false discoveries 
in genetic epidemiology studies via a prior 
specification by presenting a Bayesian False 
Discovery Probability (BFDP). This method 
is relatively simple to implement and has 
the advantage of other proposed methods, 
such as the false positive report probability,54 

by specifying distributions for the null and 
alternative hypotheses for a given test of 
association. Furthermore, the BFDP may 
be calibrated to explicitly incorporate the 
costs of false discovery versus the costs 
of nondiscovery. The major limitation of 
this approach is that it treats each test of 
association across all polymorphisms as 
independent. The approach described in 
this chapter overcomes this limitation by 
representing a joint distribution over all the 
test statistics. That is, this method places 
a full distribution upon the test statistics 
(i.e., the second-stage mixture model) 
and allows for the posterior estimation 
of a probability of a true association 
conditional on the prior covariate structure. 
Because the hierarchical nature of the 
data—that is, SNPs within genes and genes 
within pathways—provides an opportunity 
to test from the “bottom up” in this 
analysis procedure, the method places 
more emphasis on tests of main effects 
or combinations of SNPs within a gene 

in comparison to SNP interactions across 
genes. By formalizing the joint distribution 
of all the test statistics, the prior 
beliefs in the relations between them, 
and the uncertainty of the model form, 
the parameter estimates and corresponding 
uncertainty intervals will better capture the 
dependency between terms. This, in turn, 
results in tests that more effectively refl ect 
the evaluation of multiple factors. This is in 
contrast to more conventional approaches, 
such as the Bonferoni correction and 
controlling for false discovery rates, 
in which a uniform adjustment of the 
critical level is made across all p-values. 
By focusing on the posterior estimates 
for final inference, some of the multiple 
comparison pitfalls may be avoided. 
However, when relying on Bayes factors to 
gauge statistical significance, the infl uence 
of the prior structure is removed and the 
focus is solely on what the data tell us. Here, 
one must be careful when determining a 
cutoff level for declaring signifi cance and 
should consider the number of comparisons 
made in deciding what is truly signifi cant. 

Summary 
An overview has been presented of the 
analysis of numerous SNPs across multiple 
genes in a pathway focusing on the overall 
idea of incorporating prior knowledge via 
ontologies into a Bayesian hierarchical 
framework. The method presented is viewed 
as a unified approach by guiding statistical 
model selection with one’s knowledge. 
In this framework, the method is based on 
the belief that polymorphisms, genes, and 
corresponding interactions vary in their 
biological plausibility and that by formally 
incorporating this differentiation into the 
statistical analysis, some of the diffi culties in 
evaluating numerous factors may be lessened. 

While there are many difficulties in pathway-
based analyses, a pathway perspective has 
considerable promise. Many insights of 
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relations and assumptions may be gained 
by properly representing one’s knowledge of 
the underlying processes via ontologies and 
corresponding graphical representations. 
Furthermore, the formal incorporation 
of one’s knowledge into the statistical 
framework can both guide the model 
search to more relevant models and allow 
interpretation of fi ndings specifi cally in the 
context of one’s knowledge base. Ultimately, 
confirmation of results by further studies is  
the key to valid conclusions in this area of 
research. However, this hierarchical model 
selection procedure with the incorporation 
of prior knowledge can help not only in 
identifying individual components but also 
in the characterization of the underlying 
complexity of a particular trait’s variation. 

a stochastic search over all possible 
statistical models. 

Conclusions 
1. 	The available knowledge of nicotine 

dependence arises largely from studies 
that model the independent association 
of candidate genes with outcome 
measures. Such studies often fail to 
reflect the complexity of interacting  
factors and discrete events that can 
influence smoking behavior and,  
therefore, may not provide a clear 
picture of biological mechanisms 
affecting nicotine dependence. 

2. 	A promising approach to the study of 
nicotine dependence involves the use 
of prior biological knowledge about 
the relations between genotypic and 
phenotypic variables in a hierarchical 
modeling framework. This allows 
prior knowledge to aid in estimating 
specific genotypic effects and to guide  

3. 	The use of ontologies is a promising 
new direction for the elucidation of the 
genetic basis of nicotine dependence. 
An ontology is a construct or model that 
represents entities in both genotypic 
and phenotypic domains as well as their 
interrelations. The use of an ontology 
permits the modeling of hierarchical 
relationships by using directed acyclic 
graphs spanning genotypes and 
endophenotypes and phenotypes, while 
taking advantage of prior knowledge to 
quantify these relationships, making 
them amenable to computational 
analysis. 

4. 	 A study of nicotine metabolism  
that used data from the Northern  
California Twin Registry to examine  
the total clearance of nicotine and the  
trans 3-hydroxycotinine to cotinine  
ratio, with the Nicotine Pharmacokinetics  
Ontology as a framework, showed a  
significant association between specifi  c 
polymorphisms for CYP2A6 and  
measured nicotine clearance levels as  
well as statistically signifi cant results  
for single nucleotide polymorphism 4  
within UGT1A4. 

5. 	 Hierarchical modeling combined with the  
use of an ontology defi ning relationships  
between constructs of interest represents  
a promising area for further research  
in studying a possible genetic basis  
for nicotine dependence as well as for  
understanding the interaction between  
genetics and social and environmental  
influences on tobacco use and   
dependence. 
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Appendix 12A. Estimation for the 
Hierarchical Model 
A two-step estimation procedure is performed. First, for a given regression model, obtain the 

maximum likelihood estimates for and from a generalized linear model likelihood, 
f(Y |  X,b  ), and calculate the corresponding test statistic, tv. Second, conditional on the set of 
test statistics, the contribution to the likelihood for each term in the second-stage model is 
the marginal distribution of tv. 

where a() is the chi distribution given in equation (13) and b() is the mixture distribution 
given in equation (14). The full log-likelihood for the second-stage model is then the marginal 
distribution summed over the entire set of test statistics, 

and maximized with respect to H = ( ).

Application of the Bayes formula results in expressions for the posterior of the probability of 
an association being true: 

and for the posterior magnitude of the association:
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where
 

and U denotes the cumulative distribution function of a standard normal. Use a standard 
numerical maximization algorithm to maximize . The estimated parameters are then 
substituted in the posterior expression to obtain and . 
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Appendix 12B. Model Selection Algorithm
Assuming that the second-stage mixed model is independent of the regression model 
conditional on the test statistics, fi rst defi ne the posterior probability as

where  is the log-likelihood of the fi rst-stage regression model. Because the 
model space is tremendous, one should not attempt to obtain a posterior estimation for the 

s by integrating over all possible models. Instead, adopt an MCMC approach by using a 
Metropolis-Hastings algorithm.113 Thus, during the iterations of the Markov chain, accept a 
new vector of  s, * at iteration (i + 1) with probability

Here, a proposal distribution (PD) is defi ned as a function of  , the probability that a term is 
associated with the outcome. Specifi cally, PD is defi ned as

where  = Pr(k  > 0 t , ,Z ,Z ;H).v | v l p  That is, the probability of a proposed vector of s is 
dependent upon the probability that the terms are associated with the outcome given the 
vector of s at iteration i.

The MCMC algorithm is

(continued on next page)
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Part 

6 
Future Directions
 

This final part explores future directions for genetic studies of nicotine dependence, 
taking into account social and environmental influences as well as complex G×E 
interactions. It presents chapter-specific and cross-cutting recommendations for future 
research in tobacco genetics. 
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